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Abstract 

Background Real-time disease surveillance is an important component of infection control in at-risk populations. 
However, data on cases or from lab testing is often not available in many low-resource settings. Rapid diagnostic tests 
(RDT), including immunochromatographic assays, may provide a low cost, expedited source of infection data.

Methods We conducted a pilot survey-based prevalence mapping study of enteric infection in Camp 24 
of the camps for the forcibly displaced Rohingya population from Myanmar in Cox’s Bazar, Bangladesh. We randomly 
sampled the population and collected and tested stool from under-fives for eight pathogens using RDTs in January–
March 2021 and September–October 2021. A Bayesian geospatial statistical model allowing for imperfect sensitivity 
and specificity of the tests was adapted.

Results We collected and tested 396 and 181 stools in the two data collection rounds. Corrected prevalence 
estimates ranged from 0.5% (Norovirus) to 27.4% (Giardia). Prevalence of Escherichia coli O157, Campylobacter, 
and Cryptosporidium were predicted to be higher in the high density area of the camp with relatively high probability 
(70–95%), while Adenovirus, Norovirus, and Rotavirus were lower in the areas with high water chlorination. Clustering 
of cases of Giardia and Shigella was also observed, although associated with relatively high uncertainty.

Conclusions With an appropriate correction for diagnostic performance RDTs can be used to generate reliable 
prevalence estimates, maps, and well-calibrated uncertainty estimates at a significantly lower cost than lab-based 
studies, providing a useful approach for disease surveillance in these settings.
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Introduction
Real-time surveillance is an important component of 
preventative interventions against infectious disease 
epidemics. The identification of emerging disease clus-
ters can support the targeting of preventative measures 
to reduce disease transmission. Ratnayake et al.  [1], for 
example, review the use of case area-targeted interven-
tion (CATI) for cholera. In response to the early detec-
tion of a cluster, measures including chemoprophylaxis, 
water treatment and vaccination can be deployed to 
small areas.
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The identification of disease clusters typically relies 
on the statistical modelling of georeferenced and time-
stamped case data. The “Gold standard” case data is a 
large random sample of the population using PCR-based 
testing. However, PCR-based testing is expensive and 
requires laboratories with skilled technicians, which 
may be unavailable in many contexts. Alternative data 
sources with location and time information, such as hos-
pital admissions or use of electronic health services, can 
be used to monitor disease spread in a population and 
model changes in incidence [2, 3]. Again though, this 
information may not be routinely available in many low 
resource settings. In the absence of geolocated case data 
or PCR-based surveys, surveys using rapid diagnostic 
tests (RDTs) may present a useful alternative for real-
time disease surveillance.

RDTs are typically immunochromatographic assays 
that provide a visual response in the presence of specific 
antigens. These tests are relatively low cost, they can be 
administered by people with little training, and provide 
results in around 20 min (e.g [4–7]). The performance of 
diagnostic tests is generally reported in terms of its sensi-
tivity (the probability a person with the disease tests posi-
tive) and its specificity (the probability a person without 
the disease tests negative). With imperfect sensitivity and 
specificity, the crude test positive proportion is a biased 
estimator for the prevalence, and hence any derived 
measures like relative risk or odds ratios are also likely 
to be biased [8, 9]. However, one can allow for the sensi-
tivity and specificity in statistical analyses, which would 
produce unbiased estimators that appropriately reflect 
the additional uncertainty caused by the imperfect test 
[8, 10].

When used and modelled appropriately RDTs may 
therefore be a useful tool for monitoring infection in a 
population. Indeed, their uses may extend to other appli-
cations including as an outcome measure in evaluations 
of interventions. For example, water, sanitation, and 
hygiene (WASH) interventions have been the subject of 
many large-scale trials in recent years [11–14]. Almost 
without exception though, these studies have used self-
reported diarrhoea as their primary outcome. Diarrhoea 
is subject to many biases in its measurement and can be 
considered to have very poor “diagnostic performance” 
with respect to enteric infection, the transmission of 
which WASH interventions aim to prevent. PCR testing 
for enteric pathogens may be too costly or the infrastruc-
ture unavailable to include in such large trials. RDTs may 
therefore also provide a useful middle ground beyond 
surveillance applications.

In this study, we use RDTs to estimate and map the 
prevalence in the under-fives of several enteric pathogens 
at two time points in the camps for Forcibly Displaced 

Rohingya Population from Myanmar (FDRPM) in Cox’s 
Bazar, Bangladesh. These camps are typically densely 
populated and have inadequate WASH related facilities, 
leading to potentially high risk of diarrhoeal diseases. 
Our aim was to predict the prevalence of enteric infec-
tion of different pathogens and their spatial and temporal 
distribution in a FDRPM camp, and in so doing estab-
lish that RDTs could be used in such settings given the 
absence of previous research using them for this purpose, 
and develop the statistical methodology to incorporate 
uncertainty about the performance of the tests.

Methods
Study setting
We conducted our study in Camp 24 of the FDRPM 
Camps in Cox’s Bazar, Bangladesh. Figure  1 shows a 
map of the camp. The camp consists of a densely popu-
lated area in the North-East with lower density settle-
ments in the remaining area. WASH infrastructure has 
been slowly developed by several NGOs in the previous 
few years and generally consists of tube wells to provide 
water and improved latrines for sanitation.

Sample
We aimed to include 400 households with a child 
between the age of 18 and 48 months in the study, with 
good dispersion across the area of the camp. We lacked 
a complete census for the camp that could identify eli-
gible households. We therefore drew a sample from all 
households in the camp. Each sampled household was 
then visited and if they had a child under 5 years of age, 
we proceeded with the consent and interviewing pro-
cess. The camp is divided into “blocks” and each residen-
tial location in each block is assigned a sequential “door 
number”, starting at one. We obtained the total number 
of households in each block and then sampled from the 
door numbers proportional to the block size. Based on 
previous work in the area we estimated that approxi-
mately one third of households would have a child under 
the age of five and the response rate would be close to 
100%. We conducted two rounds of the survey in Janu-
ary–March 2021 (Round 1) and September–October 
2021 (Round 2). We therefore sampled 1200 households 
to obtain a sample of 400 in round 1. We aimed to revisit 
the same participating households in round 2.

Survey and stool sampling
Household survey
At each participating household, we sought consent from 
the primary caregiver of the children under five. We then 
conducted a short survey capturing basic demographic 
and socioeconomic background data using the Open 
Data Kit software on tablet devices, including age, sex, 
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Fig. 1 Map of Camp 24. The camp shows the structures in the camp reflecting the high density in the North-East of the camp. The boundary 
is indicated in red, the roads are brown, and water is blue
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level of education, time in Bangladesh, and water and 
sanitation facilities. We also captured the GPS location of 
the household in the camp.

Stool testing
A random child under five was sampled and the car-
egiver was provided with a plastic container with a bar-
code identifier for the child’s stool. The fieldworkers then 
returned the next day to collect the stool. A sample of the 
drinking water from the household was also collected 
from the container they normally used for testing the 
concentration of chlorine. The stool was taken to a field 
office in the camp. We used ProFlow tests produced by 
Pro-Lab Diagnostics, Wirral, United Kingdom for a set of 
eight pathogens listed in Table 1. Results from the tests 
were recorded in a survey form and linked to the house-
hold ID. The field worker also recorded whether the stool 
was diarrhoea or not.

Data and analysis
Sensitivity and specificity
As stated, we planned to account for the uncertainty due 
to the performance of the diagnostic tests in our statis-
tical analysis. Table  1 provides estimates of test perfor-
mance in terms of the sensitivity and specificity for each 
test based on values reported in the literature. All of the 
tests had high reported sensitivity, however specificity 
was more variable.

Covariates
We included two spatially-referenced covariates in our 
statistical model. First, we used the density of structures 
on the map (Fig. 1) as a proxy for population density. Sec-
ond, we used the estimated level of water chlorination 
in parts per million (ppm). From each surveyed house-
hold’s water sample we tested the chlorine levels, these 
data were then smoothed over the area for each survey 
round using kernel density smoothing. Figure  2 shows 
the covariates within the boundary of the camp.

Inclusion of covariates can improve predictions and 
reduce uncertainty [3, 23]. We note that the parameters 
in geospatial statistical models may be biased and diffi-
cult to interpret [24, 25], and so we do not aim to provide 
inference on the “effects” of either of the included covari-
ates beyond their relative comparisons of their magni-
tudes in predicting the outcome.

Statistical model
A technical description of the methods is provided in the 
Supplementary Information. In brief, we specified a bino-
mial geospatial statistical model. For a location s in our 
area of interest at time t = 1,2 we observe the outcome of 
the test for person i = 1, . . . ,N  as y(si, t) where:

For each location and time we define the linear 
predictor:

where x(s, t) are the spatially and temporally referenced 
covariates (Fig. 2) and Z(s, t) is a smooth latent process 
over the area of interest, which we describe below. If we 
ignore the diagnostic performance of the tests then the 
model would have p(si, t) = h−1(µ (si, t)) where h−1(.) is 
the inverse-logit function. We refer to this as the “uncor-
rected model”.

To take into account the sensitivity and specificity, the 
probability in the model should reflect the probability of 
testing positive, rather than the probability of having the 
disease. The test positive probability is:

where Sens is the sensitivity and Spec is the specificity. 
We refer to this as the “corrected model”.

Prior distributions
The standard geospatial statistical model formula-
tion specifies a Gaussian process prior for the term 

y(si, t) ∼ Bernoulli(p(si, t))

µ (si, t) = x(si, t)β + Z(si, t)

p(si, t) = (1− Spec)+ (Sens + Spec − 1) ∗ h−1(µ (si, t))

Table 1 Summary of used rapid diagnostic tests and their reported sensitivity and specificity in the literature

Pathogen Reported sensitivity 
range (%)

Prior Reported specificity 
range  (%)

Prior References

E. coli O157 80–98 Beta(18,2) 95–100 Beta(98,2) [6]

Cryptosporidium 50–100 Beta(15,5) 90–100 Beta(95,5) [7, 15]

Giardia 50–95 Beta(15,5) 90–100 Beta(95,5) [7, 15]

Shigella 80–95 Beta(18,2) 95–100 Beta(98,2) [16]

Campylobacter 80–90 Beta(17,3) 95–100 Beta(98,2) [17, 18]

Rotavirus 75–100 Beta(17,3) 98–100 Beta(99,1) [4, 5]

Norovirus 90–100 Beta(19,1) 99–100 Beta(99,1) [5, 19]

Adenovirus 90–100 Beta(19,1) 98–100 Beta(99,1) [20–22]
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Z(s, t) . We use an accurate approximation to a Gauss-
ian process prior to improve computational time and 
stability, given the number and complexity of mod-
els, with an exponential covariance function [26, 
27]. We use an auto-regressive specification with a 

single autoregressive parameter ρ to allow for temporal 
correlation.

For the model parameters we specify weakly informa-
tive prior distributions, which provide a degree of regu-
larisation and computational stability by limiting the 

Fig. 2 Spatially-referenced covariates in Camp 24: building density (top) and spatially-smoothed levels of chlorine in the drinking water supply 
in both survey rounds (bottom)



Page 6 of 12Watson et al. Conflict and Health           (2024) 18:62 

parameters to a plausible range while not being informa-
tive within this range.

For the sensitivity and specificity we reviewed previ-
ous studies on the performance of RDTs for the different 
pathogens and specified Beta prior distributions on this 
basis. The distributions we used are reported in Table 1.

Results
Prevalence of enteric pathogens
In total we surveyed and collected stools from 396 infants 
in round 1 and 181 infants in round 2. Table 2 reports the 
estimated camp-wide prevalence of the different patho-
gens. Across both rounds, 62% of infants tested posi-
tive for at least one pathogen, with 34% testing positive 
for two or more. The most common pathogens in both 
rounds were Campylobacter, Giardia, and Cryptosporid-
ium, all with prevalence over 10% in both rounds of the 
study. Table 3 reports the proportion of those who tested 
positive who reported an episode of diarrhoea in the pre-
ceding 24 h. In all cases only a small minority of test posi-
tives had had diarrhoea.

Geospatial mapping
Figures 3, 4 and 5 show the geospatial model outputs for 
Campylobacter, Giardia, and Adenovirus, respectively 
(all other outputs are shown in the Supplementary Infor-
mation). For Campylobacter (Fig. 3) there is evidence of 
raised prevalence in the North–West of the camp where 
the settlement density and water chlorination is high-
est, with predicted prevalence 10% points higher than 
other areas of the camp. The probability that preva-
lence was above 25% was 60% and 70% in rounds 1 and 
2, respectively. For Giardia (Fig.  4), there was evidence 
of clustering of cases in different locations unexplained 
by observed covariates, particularly in round 2. There 

was a high probability that the prevalence of Adenovirus 
(Fig. 5) was lower in the chlorinated areas.

Table  4 reports the model parameters: chlorine was 
highly predictive of lower prevalence of for all the viruses 
and Shigella. Comparing all the pathogens tested, all 
three viruses and Shigella displayed a high probability 
of reduced prevalence in the area with higher levels of 
water chlorination. The opposite relationship was pre-
dicted for E. coli, Campylobacter, and to a lesser extent 
Cryptosporidium.

Model outputs from uncorrected models were quali-
tatively similar to the corrected model. The uncorrected 
models suggested higher certainty around the presence of 
high prevalence areas than the uncorrected models. For 
example, in round 2 for Giardia, the clustering appears 
more certain with lower probability of high prevalence in 
the area around the high prevalence area. Similarly, the 
credible intervals of the parameters were narrower in the 
uncorrected models (Table 4).

Table 2 Estimated prevalence of the pathogens from an uncorrected estimator and an estimator corrected for the sensitivity and 
specificity of the RDTs

Pathogen Round

1 (Jan-Mar 2021) 2 (Sep-Oct 2021)

Uncorrected Corrected Uncorrected Corrected

E. coli  O157 1.7 (0.8, 2.9) 1.1 (0.1, 2.6) 2.7 (1.1, 4.9) 1.9 (0.2, 4.5)

Cryptosporidium 14.8 (11.9, 17.8) 14.1 (9.4, 18.6) 14.2 (10.2, 18.5) 13.0 (7.9, 18.4)

Giardia 19.4 (16.1, 22.7) 18.6 (10.8, 26.4) 26.8 (21.7, 32.2) 27.4 (18.3, 37.8)

Shigella 5.5 (3.8, 7.5) 5.3 (2.4, 8.3) 2.2 (0.8, 4.3) 1.8 (0.2, 4.3)

Campylobacter 22.1 (18.7, 25.6) 22.3 (14.9, 30.4) 20.7 (15.9, 25.4) 19.7 (11.2, 28.8)

Rotavirus 3.0 (1.8, 4.5) 2.3 (0.4, 4.2) 1.6 (0.4, 3.4) 1.2 (0.1, 3.1)

Norovirus 1.3 (0.5, 2.3) 0.9 (0.1, 2.0) 0.5 (0.0, 1.6) 0.5 (0.0, 1.6)

Adenovirus 1.2 (0.5, 2.3) 0.9 (0.1, 2.0) 0.5 (0.0, 1.7) 0.6 (0.0, 1.7)

Table 3 Proportion of those who test positive for each 
pathogen whose stool was diarrhoea

Pathogen Round 1 Round 2

Test 
positive, 
n

Reporting 
diarrhoea 
(%)

Test 
positive, 
n

Reporting 
diarrhoea 
(%)

E. coli  O157 6 0 4 25

Cryptosporidium 58 0 25 4

Giardia 76 0 48 6

Shigella 21 5 3 0

Campylobacter 87 3 37 8

Rotavirus 11 0 2 0

Norovirus 4 25 0 0

Adenovirus 16 6 6 0
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Fig. 3 Campylobacter  (corrected). From left to right, from top row to bottom row: log odds ratio describing the latent risk in round 1, predicted 
prevalence in round 1, log odds ratio in round 2, predicted prevalence in round 2, the probability the odds ratio exceeded 1.5 in round 1, 
the probability the prevalence exceeded 8% in round 1, and the bottom row is the respective probabilities for round 2
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Fig. 4 Giardia (corrected). From left to right, from top row to bottom row: log odds ratio describing the latent risk in round 1, predicted prevalence 
in round 1, log odds ratio in round 2, predicted prevalence in round 2, the probability the odds ratio exceeded 1.5 in round 1, the probability 
the prevalence exceeded 30% in round 1, and the bottom row is the respective probabilities for round 2



Page 9 of 12Watson et al. Conflict and Health           (2024) 18:62  

Fig. 5 Adenovirus (corrected). From left to right, from top row to bottom row: log odds ratio describing the latent risk in round 1, predicted 
prevalence in round 1, log odds ratio in round 2, predicted prevalence in round 2, the probability the odds ratio exceeded 1.5 in round 1, 
the probability the prevalence exceeded 2% in round 1, and the bottom row is the respective probabilities for round 2
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Discussion
Use of RDTs
We used RDTs to survey and map the prevalence of eight 
enteric pathogens in a FDRPM camp in Bangladesh. 
The motivation for using RDTs is that they have a lower 
price, can expedite results, can be used in the field with 
relatively little training, and obviate the need to transport 
samples. In previous work in Cox’s Bazar, we collected 
stool samples in the same manner, but then froze them 
and shipped them to a laboratory in Dhaka where we 
then used an appropriate lab-based methods to identify 
pathogens [28]. We estimated the cost per sample was at 
least 80% lower with the RDTs than in our earlier study. 
The field workers in the current study were recruited 
locally and provided with training and the appropriate 
materials, which further provided a useful link between 
the research and the population. Thus, in terms of feasi-
bility, the RDTs were successful.

Correction and effects
The epistemic cost of using RDTs to collect epidemio-
logical outcomes is the large increase in classification 
error owing to the imperfect sensitivity and specificity. 
Our statistical approach incorporated terms for these 

parameters to allow for the additional uncertainty follow-
ing previous work in this area [8, 9]. Our results showed 
that ignoring the error would result in overconfidence 
and bias in the results, both in terms of the crude preva-
lence and its spatial and temporal distribution. However, 
meaningful and interpretable results could be obtained 
from our corrected models. A key weakness of this study 
is that we did not have a Gold standard, from which we 
could estimate the “true” spatial distribution of cases and 
compare to our results. However, the cost to obtain suf-
ficient samples to estimate these geospatial models was 
prohibitive. We aimed to use all available evidence on the 
sensitivity and specificity of the tests to inform our priors 
for the parameters in the model.

Prevalence of pathogens and distribution
Our overall prevalence estimates were highly compara-
ble to our previous study in this camp where PCR-based 
methods were used [28]. Our results suggest that recent 
efforts in the camp to chlorinate the water were success-
ful in reducing the prevalence of particularly viruses. 
However, E.coli, Campylobacter, and Cryptosporidium 
were predicted to have higher prevalence in the high den-
sity region of the camp. Two mechanisms might explain 

Table 4 Posterior mean and 95% credible interval of model a parameters from both the uncorrected and corrected models

Parameter Pathogen

 E. coli O157  Cryptosporidium  Giardia  Shigella  Campylobacter  Rotavirus  Norovirus  Adenovirus 

Uncorrected 

 Intercept − 4.62 (− 6.39, 
− 3.15)

− 1.59 (− 2.28, − 0.89) − 1.39 (− 2.15, 
− 0.56)

− 3.78 (− 5.06, 
− 2.56)

− 1.48 (− 2.18, 
− 0.71)

− 4.03 (− 5.58, 
− 2.61)

− 6.80 (− 9.80, 
− 4.18)

− 2.85 (− 3.92, 
− 1.83)

 Population 
density 

0.04 (− 0.45, 
0.60)

− 0.20 (− 0.40, 0.00) − 0.04 (− 0.23, 
0.15)

0.42 (0.03, 0.82) 0.03 (− 0.16, 0.21) 0.14 (− 0.33, 
0.65)

0.69 (− 0.15, 
1.60)

− 0.05 (− 0.37, 
0.30)

 Chlorine 0.23 (− 0.41, 
0.85)

0.24 (− 0.06, 0.54) 0.24 (− 0.17, 
0.66)

− 0.61 (− 1.11, 
− 0.11)

0.06 (− 0.29, 0.36) − 0.22 (− 0.83, 
0.37)

− 0.46 (− 1.38, 
0.45)

− 0.28 (− 0.75, 
0.16)

 Length scale 1.58 (0.12, 3.72) 1.72 (0.17, 3.68) 0.81 (0.07, 2.68) 1.36 (0.08, 3.38) 1.48 (0.16, 3.68) 1.68 (0.20, 3.63) 1.50 (0.10, 3.59) 1.58 (0.09, 3.74)

 Autoregres-
sive param-
eter 

0.03 (− 0.87, 
0.88)

0.02 (− 0.87, 0.86) 0.10 (− 0.80, 
0.89)

− 0.05 (− 0.88, 
0.85)

0.10 (− 0.82, 0.90) − 0.01 (− 0.86, 
0.85)

0.03 (− 0.85, 
0.89)

0.06 (− 0.82, 
0.89)

Corrected 

 Intercept − 6.66 (− 11.40, 
− 3.38)

− 1.63 (− 2.54, − 0.77) − 1.49 (− 2.91, 
− 0.20)

− 4.70 (− 7.77, 
− 2.55)

− 1.68 (− 2.88, 
− 0.40)

− 6.17 (− 10.92, 
− 2.96)

− 7.48 (− 11.94, 
− 3.94)

− 5.52 (− 11.08, 
− 1.94)

 Population 
density 

− 0.55 (− 1.99, 
0.83)

− 0.23 (− 0.49, 0.00) − 0.04 (− 0.34, 
0.24)

0.58 (− 0.11, 
1.41)

0.07 (− 0.22, 0.36) − 0.24 (− 1.61, 
0.85)

− 0.17 (− 1.75, 
1.16)

− 0.42 (− 1.68, 
0.68)

 Chlorine 0.01 (− 1.64, 
1.61)

0.27 (− 0.11, 0.66) 0.34 (− 0.21, 
0.94)

− 0.88 (− 1.92, 
− 0.05)

0.09 (− 0.33, 0.51) − 0.39 (− 1.79, 
1.00)

− 0.41 (− 1.85, 
0.97)

− 0.47 (− 1.76, 
0.92)

 Length scale 1.53 (0.12, 3.65) 1.66 (0.12, 3.64) 0.82 (0.10, 2.65) 1.47 (0.10, 3.58) 1.42 (0.15, 3.65) 1.53 (0.11, 3.61) 1.45 (0.09, 3.57) 1.45 (0.06, 3.50)

 Autoregres-
sive param-
eter 

0.00 (− 0.88, 
0.86)

0.04 (− 0.83, 0.89) 0.03 (− 0.83, 
0.87)

− 0.04 (− 0.89, 
0.86)

0.09 (− 0.85, 0.92) 0.00 (− 0.87, 
0.89)

− 0.01 (− 0.88, 
0.86)

− 0.01 (− 0.85, 
0.86)

 Sensitivity 0.85 (0.70, 0.96) 0.90 (0.76, 0.98) 0.74
(0.56, 0.88)

0.85 (0.69, 0.96) 0.73 (0.55, 0.88) 0.95 (0.85, 1.00) 0.95 (0.86, 1.00) 0.90 (0.78, 0.98)

 Specificity 0.98 (0.97, 0.99) 0.98 (0.94, 1.00) 0.94 (0.89, 0.98) 0.99 (0.97, 1.00) 0.94 (0.88, 0.98) 0.98 (0.97, 1.00) 0.99 (0.99, 1.00) 0.97 (0.95, 0.99)
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these observations. First, transmission may be linked 
to food or environmental contamination, facilitated by 
higher population densities, rather than water. Second, 
they may be resistant to lower levels of chlorination. 
Cryptosporidium is known to be highly chlorine tolerant 
[29, 30]. One recent study suggested that Campylobacter 
isolates can survive or be revived from exposure to rela-
tively high concentrations of chlorine [31], and similar 
observations have been made for various strains of E.coli 
[32, 33]. Our highest recorded value for chlorine was 3 
ppm.

Limitations
There were other limitations to our study. Our fieldwork 
was significantly affected by COVID-19. We aimed to 
conduct a survey at the heights of both the wet and dry 
seasons, as the prevalence of viruses and bacteria vary 
[28]. However, this was not possible and the two rounds 
of our survey took place in relatively similar climates. 
We also aimed to follow up with the same households 
in rounds 1 and 2 to consider intra-person comparisons 
and facilitate sampling in round 2. However, many of the 
infants could not be re-located in round 2 due to signifi-
cant movement of people within and between camps due 
to on-going programs to relocate the FDRPMs.

Diarrhoeal disease
Our results also suggest that the carriage rate of all the 
organisms was much higher than the rate of sympto-
matic diarrhoeal illness. The vast majority of test positive 
stools were not liquid or watery. Many studies evaluat-
ing WASH interventions have used self-reported diar-
rhoea as an outcome. In previous work, we have shown 
how diarrhoea is poorly associated with enteric infection, 
irrespective of how diarrhoea is measured [28]. We argue 
that diarrhoea itself can be seen as an imperfect test of 
enteric infection, albeit with much poorer diagnostic per-
formance than the RDTs we used in this study. The diag-
nostic error associated with diarrhoea is unknown and is 
likely to vary from place to place, meaning an appropriate 
correction cannot be made, leading to bias in estimators 
of prevalence and hence the effectiveness of interven-
tions using these measures. One of the arguments for 
using self-reported diarrhoea is that it is cheap to collect, 
meaning large samples can be obtained, and it does not 
require access to expensive specialist labs, equipment, 
and personnel, which are often not available in resource-
poor contexts. In this study, we have demonstrated that 
RDTs can provide a useful middle-ground, facilitating the 
collection of data on the prevalence of enteric pathogens 
while being low cost and possible to use in difficult or 
isolated environments.
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